
An Extended SQL for Temporal Data Management
in Clinical Decision-Support Systems

Amar K. Das, Samson W. Tu, Gretchen P. Purcell, Mark A. Musen

Section on Medical Informatics
Stanford University School of Medicine

Stanford, California 94305-5479

ABSTRACT
We are developing a database implementation to support

temporal data management for the T-HELPER physician
workstation, an advice system for protocol-based care of
patients who have HIV disease. To understand the
requirements for the temporal database, we have analyzed
the types of temporal predicates found in clinical-trial
protocols. We extend the standard relational data model in
three ways to support these querying requirements. First,
we incorporate timestamps into the two-dimensional
relational table to store the temporal dimension of both
instant- and interval-based data. Second, we develop a set
of operations on timepoints and intervals to manipulate
timestamped data. Third, we modify the relational query
language SQL so that its underlying algebra supports the
specified operations on timestamps in relational tables.
We show that our temporal extension to SQL meets the
temporal data-management needs of protocol-directed
decision support.

INTRODUCTION
As database models have incorporated more semantics to

interact with clinical decision-support capabilities, the
temporal dimension of clinical data has become
increasingly important. The need to support timestamped
data was recognized early in the development of medical
databases, and one of the first implementations of a
temporal database was the Time-Oriented Database (TOD),
which was modeled after a patient flowsheet [1]. TOD's
data model maintains a "cubic view" of medical data by
adding a visit-date timestamp as a third dimension to the
two dimensions of patient identification and clinical
parameters.
Although the cubic view is a common data model

underlying many current clinical databases, its
representation of timestamps does not meet general
clinical data-management requirements for two reasons.
First, instant-based data, such as laboratory-test results,
have varying granularities. Some results, for example, are
time stamped with both date and hour, whereas others
have only a date. The cubic view becomes highly
irregular when timestamps have granularities other than 1
day. Second, some types of data, such as medication
dosages, have temporal durations. The timestamps of
these data are best represented as an interval with an
explicit start and stop time. The cubic view, however,
can not easily represent intervals.

In the T-HELPER (THERAPY HELPER) system for
protocol-directed decision support of patients who have
HIV disease [2, 3], we plan to overcome the limitations of
the cubic view by creating a new temporal data model. In
this paper, we present our approach to managing the
temporal semantics of medical data in clinical decision-
support systems. First, we discuss the types of temporal
predicates needed in protocol-directed decision support.
Then, we present our approach to representing temporal
data in relational databases and to providing temporal
operations on these data. Finally, we provide the basis for
understanding and executing an extended SQL to query
temporal data.

TEMPORAL QUERYING REQUIREMENTS
To determine the requirements for a temporal data model

for protocol-directed decision support, we have analyzed
the types of temporal predicates found in clinical-trial
protocols for HIV disease. These predicates require the
instantiations of the truth value of a temporal condition in
a protocol statement. The predicates can be grouped into
different classes:
Temporal Duration. Protocols often require
verification of the duration of interval-based data. For
example, Triton Bioscience's Study TBO1-310188 states
that patients should be withdrawn from the study "if
treatment with study drugs (rifabutin or placebo) is
interruptedfor more than 14 consecutive days" (Section
7.3, italics added).
Ordinal Ordering. Selection of data based on
ordinal ordering is commonly required in protocol-based
care. For example, the dose modification section of
CCTG Study 522 requires that "if a second episode of
thrombocytopenia occurs, dosing should be pennanently
discontinued" (Section 12.133, italics added).
Temporal Context. Context-sensitive queries based
on the patient's temporal progression in the study are
required in protocol-directed decision support. For
example, Stanford University's protocol 20/ID3
stipulates that "phenobarbital may not be given for the
first 3 months of the study" (Section 9.0, italics added).
In developing a query language to support these

predicates in the T-HELPER system, we have chosen to
create a temporal version of the Structured Query
Language (SQL) for relational databases [4], instead of
using an internally developed database language.
Commercial relational databases and standard query

0195-4210/92/$5.00 0 1993 AMIA, Inc. 128



languages (such as SQL) allow researchers to reduce the
time of software development, to create portable
applications for different hardware platforms, and to
support modem client-server architectures [4].
Our approach to extending the relational model to

support temporal queries builds upon the research
undertaken by others in the database community [5-7].
We first modify the two-dimensional relational table to
incorporate the temporal dimension of data; then, we
specify the types of temporal operations that are needed for
queries; finally, we define a temporal algebra that supports
these operations for the modified relations. The algebra is
important for understanding an extended SQL, as the
database management system translates a specific SQL
query into algebraic operations before it optimizes and
executes that query.

TEMPORAL DATA MODEL
An algebra is defined as "a set of objects anid a

collection of operations over those objects" [5]. In the
relational model, the objects are tables called relations, and
the operations take as arguments one or two relations as
operands to produce a resultant relation. Since an algebra
should be closed (such that operations return the same
type of object), a temporal relational database should
consist of only one type of relation. In this section, we
discuss how we model time, and how we represent
timestamped data within a single type of relation.
Representation of Temporal Data

Since time is a continuous value in the real world, it
can be represented by real numbers. For database
applications, however, time is usually discretized as
timepoints on a timeline. In our model of time, the
timepoints will have only a single granularity, which is at
the smallest level of interest in the database application.
In outpatient databases, the smallest granularity is
typically 1 minute. We can use real-world date-time
values to represent timepoints; three special timepoint
values are also included in our temporal data model: +oo
(all future timepoints), -0O (all past timepoints), and now
(current timepoint).
We associate three different types of medical data with

time: instance-based, interval-based, and time-invariant.
We refer to instance-based data as events. An event
corresponds to a medical datum that occurs
instantaneously; a laboratory-test result is an example
event. When the timestamp associated with an event is
collected, the user may be uncertain of the precise instance
at which the event occurred. Instead, she may know only
an approximate interval of time during which the event
took place. Data models that attempt to capture the
temporal uncertainty associated with events normally use
a single timepoint with varying granularities (such as
minute, hour, and day). The coarser the granularity of the
timepoint, the greater the uncertainty regarding the time
associated with the event. In our temporal data model,
however, all timepoints have the same granularity. We
represent an event with a pair of timepoints for the lower

and upper bounds of the closed interval of uncertainty
(IOU) during which the user has specified that the event
occurred. The lower and upper bounds of the IOU are
equal if the user is certain of the timepoint associated with
an event. We assume that the probability distribution of
the event is uniform over the IOU. We can thus compute
the probability of the event over any of the IOU's
subinterval as the duration of the subinterval divided by
the duration of the IOU.

This representation of events has two advantages over
models that use a single timepoint with varying
granularities to capture temporal uncertainty [7]. First,
our model is not limited to measuring IOUs based on real-
world date-time granularities. We can, for example, store
a clinical event in a history as occurring sometime during
a 30-minute period, instead of using a granularity of 1
hour. Second, when comparing the order of events with
overlapping IOUs, we do not need to make timepoint
approximations, which data models with different
granularities do need to make.

Interval-based data represent states and are bounded by
start and stop events. An example state is the
administration of a clinical-trial protocol, which is
initiated by an enrollment event and terminated by a
discontinuation event. Both the start and stop events of a
state can be represented as IOUs; the closed interval
between the upper bound of the start event and the lower
bound of the stop event, which we call the body of the
state, represents an interval of certainty (IOC). At each
timepoint in the IOC, the value of the state holds true.
Time-invariant data are stored as IOCs that exist for all
possible timepoints; the values of the timepoints for the
start bound are -00, and those for the stop bound are +oo.
By modeling instant-based, interval-based, and time-

invariant data as IOUs, IOCs, or a combination of both,
we can define an interval-stamping method for storing
these three types within a single type of relational table.
We call such a relation a history. Each row, or tuple, in a
history will store the temporal dimension of a patient
parameter over a closed interval; a pair of columns will be
required in each history to represent the endpoints of the
interval as timestamp attributes.
With this method of interval stamping, we can store the

IOU of an event within a single tuple, whereas we need
three tuples to store the IOUs of a state's start and stop
events and the IOC of the body. To distinguish these
types of interval, we also use two attributes to maintain
the type of interval (event, start event, body, or stop
event) being stored, and to keep an event's cumulative
probability over an IOU (the probability is equal to null if
the interval is of type body). In storing changes of a
patient parameter, we constrain the history so that, at any
particular timepoint in the interval, each nontimestamp
attribute has a single or null value. We can place this
constraint on histories by making the set of timestamp
attributes part of the primary key. Figure 1 provides
example histories of events and of states.

129



Q~1~l :~~1ITYPEI PROBABILITYVAU
Jan 719901 an 71990: event 1.0 03 WBC
Jan 719903:OPM Jan 719903:59PM event 1.0 8703 WBC 2.00
Jan 18 1990 12:00AM I Jan 181990 11:59PM I event I 1.0 I 8703 WBC I 4.30

(a)

M|Mi ~~......... ..wTP RBAIIY[DOSE
Jan 181990 12:00AM Jan 18199011:59PM 1.0 87 ZIDOVUDINE 400.00
Jan 19 1990 12:00AM Jan 28 1990 11:59PM body null 8703 ZIDOVUDINE 400.00
Jan 29 1990 12:00AM Jan 29 1990 11:59PM stop event 1.0 8703 IDOVUDINE 400.00
Jan 30 1990 12:00AM Jan 30 1990 11:59PM start event 1.0 8703 IVD500.0
Jan 31 1990 12:00AM Jun 17 1990 11:59PM body null 8703 IDOVUDINE 500.00
Jun 18 1990 12:0OAM Jun 18 1990 11:59PM stop event 1.0 703 UDINE 50.00

(b)

Figure 1. The same type of extended relational table, or history, is used to store both events and states. A pair of timestamp
attributes (left of the vertical double bar) must be included in each history. The two timestamp attributes are included as part
of the primary key (shaded tenns). (a) LAB_TEST table: example history of events. (b) MEDICATION table: example
history of states.

Operations on Temporal Data
Operations involving events and states are based on

comparisons and operations for timepoints and intervals.
Timepoint Comparisons. Few mathematical

operations apply directly to discrete timepoints, since we
cannot add, multiply, or divide two timepoints. Since all
timepoints in our data model have the same granularity,
we can compare discrete timepoints to determine a linear
order using standard comparison operations. The terms
AT, BEFORE, and AFTER are used to indicate the
comparison operators =, <, and >, respectively. We can
also use the comparison I ADJACENT u , where t and u
are timepoints, to determine if t is 1 granule less than u.
Interval Comparisons. Since intervals are

represented as pairs of timepoints, comparisons between
intervals are based on timepoint comparisons of the upper
and lower bounds. A complex set of comparisons-
BEFORE, UNTIL, LEADS, STARTS, EQUALS,
DURING, SPANS, FINISHES, LAGS, FROM, and
AFTER- can be made between two intervals. This set
was originally defined by Allen [8].
Timepoint Operators. In addition to comparing

timepoints, we can subtract one timepoint from another to
find the length of time between them. The function
DURATION(tl, t2) returns the number of granules
between the timepoints 11 and t2. We can also create new
timepoints by adding (or subtracting) granules to a given
timepoint. We use ADDGRANULE(t, x) to add to t x
granules to create a new timepoint.
Interval Operators. Given two overlapping

intervals, we call compute a new interval as the union,
difference, or intersection of the two [9]. The operation
CATENATE takes two overlapping (or adjacent) intervals

and returns a new interval that consists of the set of
timepoints in either of the original intervals. The
function SHORTEN takes two intervals that overlap and
removes from the first interval the points common to
both to create a new interval. EXTRACT also takes two
intervals, but returns a new interval containing only those
points that are in both intervals. The intervals used in
these three binary functions can be both IOUs, both IOCs,
or a pair of each.

TEMPORAL QUERY LANGUAGE
In this section, we show how operations on temporal

data are implemented in an extended SQL.
Temporal Query Syntax

Since we have extended the relational data model to
maintain the underlying view of temporal data as
timepoints on a timeline, we call the extended SQL
TIMELINESQL (TLSQL). TLSQL is based on the
simple structural framework of SQL, with syntactic
extensions to support operations on events and states in
histories. TLSQL adds the following new constructs to
standard SQL:
1. Temporal abstractions - such as timepoint, interval,

and duration- as selectable attributes
2. Selections based on ordinal ordering of timepoints

using the terms FIRST, SECOND, THIRD, or
LAST in the SELECT clause

3. Selections based on temporal comparisons of
timepoints and intervals using terms in a WHEN
clause

4. Methods to perform catenation of overlapping or
adjoining intervals with the same nontimestamp
values using the tenn COALESCED in the SELECT
clause

130



5. Methods to perform extraction or subtraction of
overlapping intervals in two different histories using
the terms CONCURRENT WITH (for EXTRACT) or
NOT CURRENT WITH (for SUBTRACT) in the
WHEN clause

The formal syntax of a TLSQL retrieval statement
contains the following clauses:

SELECT [FIRSTISECONDITHIRDILAST] [COALESCED]
select_item_commalist

FROM table_name_commalist
WHEN temporal comparison list
WHERE search_condition_list

Temporal Query Semantics
Although the syntax of TLSQL is an extension of

standard SQL syntax, the semantics of a TLSQL query are
based solely on the temporal relational model outlined in
this paper. The temporal semantics contained in a
TLSQL query, consequently, cannot be translated into
standard relational algebra [10]. We instead modify and
extend standard relational algebra to create a version that
incorporates temporal operations on timepoints and
intervals. We refer to this version as temporal relational
algebra. We now describe how temporal projection,
selection, and join are a set of algebraic operators that
support the temporal querying requirements discussed
previously.
Temporal Projection. Standard projection restricts

attributes in a table to those specified in the SELECT
clause. Temporal projection is similar to standard
projection, except that the restriction applies to only the
nontimestamp attributes. Both timestamp attributes
cannot be excluded in the resultant history, because these
attributes maintain the temporal dimension of the data. In
the following example TLSQL query, we would like to
determine how long patient 8073 in our sample database
(in Figure lb) was taking the medication zidovudine,
regardless of the uncertainty associated with start and stop
events or the particular dosage administered:

SELECT
FROM
WHERE

COALESCED DRUG_NAME
MEDICATION
PATIENT_ID = 8073 AND

DRUG-NAME = "ZIDOVUDINEI

The query returns the following history with one tuple:

I START_TIME STOP-TIME 1 DRUG-NAME
Jan l8 1990 12:0AM un 8199011:59PM

By using temporal projection and the term COALESCED,
we can specify which attributes should be selected and
which adjoining intervals should be catenated into a single
interval in the resultant relation. This algebraic operation
provides the basis for reasoning on the temporal duration
of specifled attributes.
Temporal Selection. Standard selection restricts

which tuples from the operand relation will be included in

the resultant relation; the tuples in the result must satisfy
the predicates in the WHERE clause. In our temporal data
model, we are also interested in restricting tuples based on
temporal comparisons and ordinal selection. We add the
terMs FIRST, SECOND, THIRD, and LAST to specify
ordinal selection, and a WHEN clause to specify the
temporal comparisons that should be used. The following
example TLSQL query requests the second white-blood-
cell count on January 7, 1990 for patient 8073:

SELECT SECOND VALUE
FROM LAB_TEST
WHEN (START_TIME, STOP_TIME) DURING

(Jan 7 199.0 12:00AM, Jan 7 1990 11:59PM)
WHERE PATIENT_ID - 8073 AND TEST NAME = "WBCN

The query returns the following history with one tuple:

|START_TIME STOP_TIME 11 VALUEI
Jan 71990 3:00PM Jan 7 1990 3:59PM 2.00

Temporal selection of data provides an algebraic operation
to determine whether data match the ordinal-selection and
temporal-comparison predicates in temporal-reasoning
criteria.
Temporal Join. The ability to combine data from

two different relations is an important feature of relational
algebra that is provided in the join operator. We define a
temporal version of join that can combine timestamped
data from two different histories into a single history.
The intervals in the resultant history are created by
applying the EXTRACT operation to overlapping
intervals of the operand histories; the nontimestamp
attributes are taken from both operand relations. In the
following TLSQL query, for example, we would like to
determine the values of the white-blood-cell counts when
patient 8073 was taking the medication zidovudine:

SELECT
FROM
WHEN
WHERE

LAB_TEST.VALUE
LAB_TEST, MEDICATION
LAB_TEST CONCURRENT WITH MEDICATION
LAB_TEST.PATIENT_ID - 8073 AND
LAB_TEST.PATIENT_ID =

MEDICATION.PATIENT_ID AND
LAB_TEST.TEST_NAME = "WBC" AND
MEDICATION.DRUG_NAME - "ZIDOVUDINEI

The query returns the following history with one tuple:

ISTART-TIME STOP-TIME II VALUE I
Jan 18 199012:OOAM Jan 181990 11:59PM 4.30

Using the temporal join operator, we can create new
histories that provide temporal contexts during which
other temporal predicates can be specified.

Besides temporal projection, selection, and join, we also
provide other temporal versions of standard relational
algebra; the complete set of temporal relational algebra is
provided elsewhere [11]. The relatively simple TLSQL

131



query examples in this section, however, demonstrate the
expressive power of the language and the ability to
support temporal predicates.

DISCUSS ION
In this paper, we have provided our approach to

modeling the temporal semantics of medical data with the
relational data model. Our temporal model of relational
databases consists of relational tables called histories,
which store either instant-based events or interval-based
states. We also define a set of temporal operations for the
timepoints and intervals used in event and state
representation.
The temporal data model uses two timestamp attributes

to represent the temporal changes of each patient
parameter; it consequently uses space less efficiently than
do data models that use only one timestamp attribute
(such as TOD). The semantics of intervals and of
granularities associated with medical data, however, are
not captured by the latter models. As the price of hard-
disk storage continues to decrease, the cost in space
requirements for our temporal data model will be
outweighed by the benefits in representation flexibility
that the model provides.
We have also discussed a method to create a temporal

version of the relational query language, SQL. The
difficulty of making temporal queries in standard SQL has
been encountered by other researchers in medical
informatics [12]. We are able to overcome these
difficulties by developing a temporal relational algebra for
histories based on our set of temporal operations. We
extend the syntax of SQL with new terms, so that the
semantics of an SQL for histories (TLSQL) can be
understood in terms of the underlying algebraic operators.
The example TLSQL queries illustrate that the set of
algebraic operators supports the three classes of temporal
predicates we found in clinical-trial protocols.
We are not certain, however, of the range of temporal

predicates that might be required by clinical decision-
support systems. Our current research in the theory of
temporal databases is, consequently, focused on defining
an algebra that has temporal completeness. The database
research community has yet to reach a consensus on the
issue of temporal completeness [5]; however, by
reviewing the types of temporal predicates found in
clinical-trial protocols and in other temporal query
languages, we can at least gain an understanding of what
is required for temporal completeness in the medical
applications that we most want to automate.
We are currently implementing our temporal data model

and TLSQL with a Sybase relational database and C host
language. The implementation, called Chronus, provides
both preprocessing ofTLSQL into standard SQL operators
and postprocessing of data for operations not supported
directly by standard relational algebra. By supporting and
maintaining an event- and state-oriented view of patient
data in the simple structure of relational tables, Chronus
permits clinical decision support systems to take

advantage of both the semantics of timestamped data and
the properties of relational databases.

Acknowledgments
We thank L. Dupre for her editorial assistance in the

preparation of this paper. This work has been supported
in part by grant HS06330 from the Agency for Health
Care Policy and Research and by grants LM05208 and
LM07033 from the National Library of Medicine.
Dr. Musen is a recipient of an NSF Young Investigator
Award.

References
[1] Wiederhold, G., Fries, J.F., and Weyl, S. Structured

organization of clinical data bases. Proceedings of
AFIPS NCC. AFIPS, 1975:479-85.

[2] Musen, M.A., Carlson, R.W., Fagan, L.W.,
Deresinski, S.C., and Shortliffe, E.H. Computer
support for community-based clinical research.
Proceedings of the Sixteenth Annual SCAMC.
Washington, DC. November 1992.

[3] Shahar, Y., Tu, S.W., Das, A.K., and Musen, M.A.
A problem-solving architecture for managing
temporal data and their abstractions. Proceedings of
the Workshop on Implementing Temporal
Reasoning, AAAI-92, San Jose, CA. July 1992.

[4] Date, C.J. A Guide to the SQL Standard. Reading,
MA: Addison-Wesley, 1989.

[5] McKenzie, L.E., and Snodgrass, R.T. Evaluation of
relational algebra incorporating the time dimension
in databases. ACM Computing Survey 23:501-43,
1991.

[6] Navathe, S.B., and Ahmed, R. A temporal relational
model and a query language. Information Sciences
49:147-75, 1989.

[7] Sarda, N.L. Extensions to- SQL for historical
databases. IEEE TKDE 2:220-30, 1990.

[8] Allen, J.F. Maintaining knowledge about temporal
intervals. Comm ACM 26:832-43, 1983.

[9] Wiederhold, G. Semantic Database Design. New
York: McGraw-Hill (in press).

[10] Ullman, J.D. Principles of Databases. Rockville,
MD: Computer Science Press, 1984.

[11] Das, A.K., Tu. S.W., and Musen, M.A. A historical
relational data model for managing temporal data.
Tech. Rep. KSL-91-77, Knowledge Systems
Laboratory, Stanford University, Stanford, CA.
1992.

[12] Huff, S.H., Berthelson, C.L., and Pryor, T.A.
Evaluation of an SQL model of the HELP patient
database. Proceedings of the Fifteenth Annual
SCAMC. Washington, DC. P.D. Clayton (Ed.)
IEEE Computer Society. November 1991.

132


